On the quadratic two-parameter eigenvalue problem and its linearization ?

نویسنده

  • Andrej Muhič
چکیده

We introduce the quadratic two-parameter eigenvalue problem and linearize it as a singular two-parameter eigenvalue problem. This, together with an example from model updating, shows the need for numerical methods for singular two-parameter eigenvalue problems and for a better understanding of such problems. There are various numerical methods for two-parameter eigenvalue problems, but only few for nonsingular ones. We present a method that can be applied to singular two-parameter eigenvalue problems including the linearization of the quadratic two-parameter eigenvalue problem. It is based on the staircase algorithm for the extraction of the common regular part of two singular matrix pencils. AMS classification: 65F15, 15A18, 15A69, 15A22

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Pade Approximate Linearization for Solving the Quadratic Eigenvalue Problem with Low- Rank Damping

The low-rank damping term appears commonly in quadratic eigenvalue problems arising from physical simulations. To exploit the low-rank damping property, we propose a Padé Approximate Linearization (PAL) algorithm. The advantage of the PAL algorithm is that the dimension of the resulting linear eigenvalue problem is only n+ lm, which is generally substantially smaller than the dimension 2n of th...

متن کامل

A Padé approximate linearization algorithm for solving the quadratic eigenvalue problem with low-rank damping

The low-rank damping term appears commonly in quadratic eigenvalue problems arising from physical simulations. To exploit the low-rank damping property, we propose a Padé approximate linearization (PAL) algorithm. The advantage of the PAL algorithm is that the dimension of the resulting linear eigenvalue problem is only nC `m, which is generally substantially smaller than the dimension 2n of th...

متن کامل

Scaling, sensitivity and stability in the numerical solution of quadratic eigenvalue problems

The most common way of solving the quadratic eigenvalue problem (QEP) (λM+λD+K)x = 0 is to convert it into a linear problem (λX+Y )z = 0 of twice the dimension and solve the linear problem by the QZ algorithm or a Krylov method. In doing so, it is important to understand the influence of the linearization process on the accuracy and stability of the computed solution. We discuss these issues fo...

متن کامل

Sturm-Liouville Fuzzy Problem with Fuzzy Eigenvalue Parameter

This study is on the fuzzy eigenvalues and fuzzy eigenfunctions of the Sturm-Liouville fuzzy problem with fuzzy eigenvalue parameter. We find fuzzy eigenvalues and fuzzy eigenfunctions of the problem under the approach of Hukuhara differentiability. We solve an example. We draw the graphics of eigenfunctions. We show that eigenfunctions are valid fuzzy functions or not.

متن کامل

Jacobi-Davidson methods for polynomial two-parameter eigenvalue problems

We propose Jacobi–Davidson type methods for polynomial two-parameter eigenvalue problems (PMEP). Such problems can be linearized as singular two-parameter eigenvalue problems, whose matrices are of dimension k(k + 1)n/2, where k is the degree of the polynomial and n is the size of the matrix coefficients in the PMEP. When k2n is relatively small, the problem can be solved numerically by computi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009